黑洞-第16部分
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
汐力的拉伸作用,就如同他被吊在埃菲尔铁塔的一根横梁上,而全巴黎所有的人都吊在他的脚上。
然而,潮汐力的强度依赖于产生它的物质的密度。黑洞的质量越大,密度就越低,其外部时空的弯曲就越小。因此,人体在很大质量的黑洞附近倒能够经受得住。我们那位作试验的宇航员能够到达1000Mpe量黑洞的视界,他甚至能够探索1000万M。质量的巨型黑洞的内部,因为这种黑洞视界上的潮汐力比由地球所产生的还要弱,而后者已经是难以觉察了。但是,一旦他越过了视界,他就会无可挽回地落向中心奇点,于是无论黑洞质量是多大,他都会被无限大的潮汐力撕得粉碎!
时间的冻结
图对还显示,在事件EpE.、马和E4上产生的光线如何离开收缩恒星的表面,并在几、凡、凡和儿被远处的天文学家(其世界线由一条垂向直线表示)所接收到。假定由一只始终放在恒星表面上的钟所量度的四个事件之间的时间间隔是相等的,和儿接收光信号时间之间的间隔却越来越长。作为极限,由民即恰在视界形成时所发出的光线,要经过无限长的时间才能到达远处的观测者那里(因此几点在图中没有标出)。
这种“时间冻结”现象是爱因斯坦相对论所预言的时间弹性的极端例证,时间的流逝对于两个有相对加速度(或者由等效原理,处在不同引力场中)的观测者来说是不同的。相对于不参与自由下落的遥远观测者,引力坍缩中的恒星表面是在加速,于是由放在恒星表面的钟所量度的坍缩的原时,就与由一只远处独立的钟量度的坍缩的表观时间大不相同。恒星在史瓦西半径以下的收缩,是发生在有限的原时内,却对应着无限长的表现时间。远处的天文学家将永远不能看到黑洞的形成,也不能看到其内做
由信号接收间隔的延长所显示的表现时间冻结,也由离开恒星的辐射表观频率的减小表现出来,因为频率就是光在每秒钟振荡的次数(这也是一种爱因斯坦效应,已在第3章中谈到)。如果辐射的表现频率减小,其波长就会增大,也就是表现为红移,因为波长最大的可见光是红色的(见表1)。远处的天文学家将看到不仅是坍缩进行得越来越慢,而且发出的辐射越来越红,越来越暗弱。
图28足时间冻结的一个更别致的描绘。一只飞船受命去探索一个黑洞的内部——当然最好是一个大黑洞,因而飞船不至于太快地就被潮汐力摧毁。就在飞船一去不复返地穿过视界的时刻,指挥员向全人类致以庄严的敬礼,他的告别由电磁传给遥远地球上的观众。
影片A是按宇航员原时的相等间隔拍摄的系列图像,这是飞船上的同事们看到的情景。按照飞船上的钟,指挥员的敬礼在第135600秋时开始,在第135720秒时结束。穿越视界是在敬礼过程之中,没有任何特别现象发生,在飞船上的探险家看来,黑洞的边界没有任何神奇之处。
影片B是遥远观众在屏幕上接收到的系列图像,按表观时间的等间隔顺序排列。开始时它与影片A是一样的,但随着飞船向视界趋近,它越来越慢下来。远处的观众接连收到几乎同样的图像,宇航员超过视界时的姿势似乎被永远冻结住了。由于频率的移动和强度的减弱,事实上图像会很快变得弱到看不见,观众对飞船在黑洞内的航行是一无所知的。飞船正好越过视界时的图像能够传到远处,而所有后继的图像都不可能从黑洞中传出,而是落向奇点。
时间冻结是黑洞的一个引人注目的特征,以至于冻结星这个词曾被用来(首先是由俄国天体物理学家)称呼黑洞。这个词最后还是被放弃了,因为它毕竟只是反映了黑洞物理的一个较次要的方面。如果外部观测者要到无限远的将来才能看到视界,那么也就根本谈不上对黑洞内部的探索了,而广义相对论使我们能够探索黑洞内部(不必担心潮汐力)。
颠倒的世界
进入此间者,万念皆抛弃。
——T(Dame)《地狱篇》
其他致密星如白矮星和中子星,引力坍缩已经被物质的内部阻抗所制止,并且有一个固体表面。黑洞与它们不同,一旦史瓦西半径已被越过,视界已经形成,就没有任何力量能够阻挡坍缩。所以,黑洞内部是空空荡荡的,只是在中心有一个奇点(当然,这种推断也许过于简单,它忽略了黑洞内部物质的动力学行为,第19章将对此作进一步的考察)。
对于那些已经觉得难以接受黑洞的极高平均密度的人说,更糟的是,理论上黑洞的所有质量都集中在一个数学体积为零的中心奇点上。在探讨这个现代物理学尚未解决的中心奇点问题之前,先来看看其邻近区域的情况。
因为时空在坍缩,所以这个区域是运动着的,也就是说,在黑洞内部保持静止足不可能的,如图27所示。要在这个区域保持静止,就必须有超过光速的速度(距离r不变的世界线与时间轴平行,在黑洞内部该线处于光锥之外),但是相对论禁止任何比光速更快的运动,这条定律在黑洞内部同在其外部一样适用。在观界以内唯一允许的轨道,即限制在光锥内部的轨道,是不可挽回地向中心奇点集中。
可以把黑洞比作一个“颠倒的世界”,这种说法可能会令人迷惑,但请注意厂面的比拟。在黑洞的外部区域,例如我们所居住的时空区域,在三维空间中任何方向上的运动都是可能的,无论是前进或后退,向左或向右,朝上或朝下;但是,时间只朝一个方向流动,即从过去到将来,这足一个“指向”坐标,沿着它的流动就被称为因果律(见“光使时空联姻”一节)。而在黑洞内部,角色颠倒过来了,用于描述与黑洞中心距离的坐标(由视界处的ZM到奇点处的零)变成了指向坐标,而时间坐标却变成像黑洞外部的空间坐标那样。在黑洞内,空间变得不可逆转,即所有物质都被迫只能缩短空间坐标,正如在黑洞外所有事件都必然朝时间增长的方向进行一样。
然而,必须小心地认识这些概念。它们并不意味着,在黑洞内时间坐标变得像外部的空间坐标,因而可以逆转时间,违反因果律。时间坐标由于视界而改变了性质,不再表示真实的时间,不论是在黑洞之内或之外都是如此(在黑洞之外它表示的是由无限远处的钟测量的表观时间)。唯一有物理意义的时间是朝奇点自由下落的钟所测量的原时。在黑洞内部原时只依赖于与中心奇点的距离坐标,随后者的减小而增长。这就像黑洞外部的时间总是朝向未来流驶,唯一的不同是这里的未来是有终极的,就是黑洞中心的奇点。自由下落的飞船从越过视界到落入奇点只经历有限的原时间隔,无论其发动机的功率和航行的方向如何。黑洞质量越大,这段“缓死”时间就越长。对10Mgu黑洞它只是10-’秒,而对隐藏在星系核心的巨型黑洞则探索工作可以进行1小时。第十章 照明
那黑色熔炉的中央,那送出无数太阳的地方,无穷的魔力在那里蕴藏。
——阿瑟·里姆包德( Arthur Rhobaud)
照明问题
表示一个物体的最好方式之一是由拍照来获得它的图像。我们能够想象给黑洞拍照吗?
这个问题看似荒唐,因为黑洞按其定义不能发出光来,但是,事实上,所有温度足够低的物体自身都不具有可探测的辐射源,也就是说和黑洞一样不发光。这些物体要能被我们看见,就必须被照明。行星的核心不产生热核能量,如果不是其表面反射太阳光,它们在夜空里是不可见的(木星这颗太阳系的最大行星,有一种内部能源,由于其核心的轻度收缩,原子氢转变成金属氢,形成像冰那样的固体晶格。这种相变释放出少量能量,使木星自身能发光,这个光度稍大于反射的太阳光)。
在这个意义上,黑洞也同行星一样。一个不被照明的黑洞是不可见的,但在适当的光照下也可以得到它的图像,给黑洞照相是能办到的!
自然界的任何一个物体都以某种方式吸收和反射电磁辐射。图川所示的实验用平行光束来照射几个“理想”物体,并观察与人射方向垂直的方向上的反射光,所得图像的类型取决于物体的性质,即物体如何与电磁波反应。
在完全黑体的情况(例如一只涂了完全吸收光的黑颜料的球),所有光线都被吸收,没有任何反射,观察者什么也看不到。
对于一个粗糙的表面(如月亮和行星),光线被各向同性地反射,就是说在所有方向上的反射强度都相等,因而在表面上每一点都可以有一条光线相对于人射方向偏转90”而到达观察者那里,结果就是人们熟悉的半月图像(图30b)。
第三种物体是完全反射的金属球。这时表面上只有一个点能使一条人射光线偏转90”而被观察者接收到。该球的图像缩成一个光点,座落在该球实际半径0厂07倍的位置一L(图30C)。
最后一种情况是黑洞。与前三者的根本区别是,黑洞并没有一个光线可以撞击并被反射的物质性硬表面,使光线偏转的是黑洞的引力场,因此黑洞的势力范围就不只是其视界,而是延伸到无穷远。光线的轨道并不是因与一个表面的碰撞而改变,而是被引力场所弯曲。在这个照明实验中,黑洞的引力场使几条光线朝观察者偏转。黑洞的图像由一系列照明点组成(图30d)。在左边,黑洞史瓦西半径的2.96倍,已被偏转90”的光线形成“主级”图像;右边的261倍史瓦西半径处,多偏转了半个圆的光线(共偏转270”)形成“次级”图像。通过对与光线轨道对应的史瓦西时空测地线的完整计算表明,黑洞有着无数个图像,第三个图像对应着偏转450”的光线,依此类推,每次都多偏转半个圆。但是实际上从第三级起的图像强度都很低,并且很靠近主级或次级图像,因而不能分辨出来。
因此可以得出结论,在各种本身不发光的天体中,黑洞远不是最暗的,对它们的探测比对黑体球或高度反射的球要容易。
黑洞的光轮
上述实验还可以改变成另一种形式,即也用平行光束照射黑洞,但在同方向上观察反射回来的光,结果如图对所示。
黑洞的像被放大了,像的半径为实际半径的26倍。这是因为入射光的很大一部分被黑洞捕获,不仅是那些直接射入视界的光,而且所有在距中心5.ZM以内经过的光也都落入黑洞(黑洞的实际半径是ZM),所形成的图像就是一个黑色的盘面被一系列同心光环所围绕。这个结果很像传统光学中熟知的光轮效应:当阳光被雾里的无数小水滴散射时,一个人有时能看到自己头部的阴影被许多明亮的光环围绕着。
对于黑洞的光轮效应,只有较靠外的光环能被看到,而靠近黑洞的光环是不可能分辨出来的。
头和尾
刚才给出的这些实验并不只是一种智力测验,这是因为,如果黑洞确实存在,它们就很有机会被某种自然光源照亮。
对于一个黑洞或一颗行星来说,最显而易见的照明光源是一颗恒星。比如说,这颗恒星可以和黑洞一起束缚在~个双星系统里,但是,尽管这种系