神鸟电子书 > 经管其他电子书 > 无知的博弈:有限信息下的生存智慧 >

第5部分

无知的博弈:有限信息下的生存智慧-第5部分

小说: 无知的博弈:有限信息下的生存智慧 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



涞南群笥肱⒌闹柿客耆挥泄叵怠D敲矗阌Ω迷谑裁词焙蚓龆ń邮芤晃慌ⅲ⑶沂沟帽唤邮艿哪俏慌⑹粲谧詈门⒌母怕首畲竽兀�
  当然,你可以采取与候车模型中“随便”策略类似的做法,抓阄来任意选定一位女孩。如果你这样做,那么你有5%的可能性获得最好的女孩。概率比较小,很难发生。
  另一种看来复杂一点的策略是:把全部女孩分成前后两段,最先出现的10位均不接受,但了解了这10位女孩的质量,然后在后来出现的10位女孩当中,第一次碰到比以前都可爱的女孩,就立刻接受。这就是“等一等、看一看”的策略。在这样的策略中,你得到最好女孩的概率似乎是(10/20)×(10/19) = 0。263。这个概率已经不算太小。补充说明一下此策略中概率的算法:在这样的规则下,确保得到最好的女孩必然要求最好的女孩在后10名女孩中出现—否则你怎么也得不到最好的了—其概率是10/20,同时,还要求第二好的女孩出现在前10名,其概率为10/19—为什么是10/19?因为除了最好的,剩下人数为19个,第二好的女孩出现在前10名的概率就是10/19—这样就确保了你会得到最好的女孩。
  【更新慢或者章节错误,点击举报(请详细说明)】



'15'与上帝博弈(4)

  但是,这个策略得到最好女孩的概率真的是0。263吗?可能不是,因为这只是第二好的女孩刚好出现在前10位的情况;实际上,即使第二好的女孩没有出现在先前的10位,但只要在最好的女孩出现之前的所有女孩中质量最高的出现在前10位,那么该策略也可确保得到最好的女孩(这一点要想通,否则就难以明白接下来的内容)。也就是说,该策略获得最好女孩的概率实际上是超过0。263的(我们很快会发现这个概率应是0。359 4。哇!这的确已经是一个不小的概率了)。
  但是,还有更好的方法吗?或者我们可以问,放弃先出现的10位女孩是否是最优的?如果不是,那么应该放弃几位先出现的女孩呢?
  幸运的是,我们的确有更好的策略(你应该先把前面的内容看懂,如果前面没看懂,下面可能就更看不懂了)。既然20位质量不同的女孩其质量在你生命里是随机出现的,没有任何规律,那么,第k个女孩刚好是最好女孩的概率是1/20,而刚好把这个最好的女孩选择到的概率是多少?对此的考虑应该是:既然给定了第k个女孩质量最好,而我们决定放弃前面n-1位女孩,从第n位开始执行前述策略的规则(第一次碰到比以前都可爱的女孩,就立刻接受),那么必须要求在k之前的女孩中质量排名最高的那个必须出现前n-1位女孩中,这样才能确保k被选中,其概率就是(n-1) / (k-1)。从而第k个女孩刚好是最好的女孩而且又一定被选中的概率就是(1/20)×(n-1) / (k-1)。这里,k的取值范围显然应该是'n; 20'中的整数。所以,放弃n-1位女孩而一定会得到最可爱的那位女孩的概率实际上就是
  这个概率可以用Mathematica软件来计算,或者用Excel来计算也可以,读者会发现,当n*=8时,该概率有最大值0。384 2。也就是说,如果我们放弃前7位女孩,先看一看,心里有个谱,然后只要看到比前7位女孩中最好的还要好的女孩,那么我们就立即选择接受。而这位被接受的女孩刚好属于最好女孩的概率是0。384 2。这比我们放弃10位女孩(n*=11)的策略要好,该策略根据上述公式计算得出获得最好女孩的概率为0。359 4。
  我们用Mathematica软件绘出获得最好女孩的概率图形(纵轴是概率,横轴表示从第几位开始认真考虑接受。最大概率出现在n*=8,即放弃前7位,从第8位开始认真考虑接受,见图2…2)。
  根据上述结果,我们可以得出这样的结论:若一个人在20~30岁之间选择结婚对象,而这20位女孩以每年两位的平均分布出现,那么你应当在24岁才开始认真考虑终身大事。
  这个例子也可任意改动数据后用同样的方法求解。比如,如果是30位女孩,那么你应该从第11位女孩开始认真考虑终身大事。
  图2…2   转向认真考虑婚姻选择的决策点
  这个例子也可以改成其他的版本,比如:在20层楼中,每层楼都放着一颗宝石,每颗宝石的大小不一。现在你从第一层开始上楼,每到一层楼你都可以决定要不要该层楼中的宝石。如果不要,不能回头。如果要,以后就不能再取。或者,有20位求职者,你希望尽可能雇用到最好的那位,但你对他们的面试机会只有一次。你应该如何才可以有最大的机会获得最大的那颗宝石(最好的那位求职者)?这个问题,据说是微软公司的面试题。但它的道理,与最大可能获得女孩的道理是一样的。
  【更新慢或者章节错误,点击举报(请详细说明)】


'16'与上帝博弈(5)

  由此还可引发出另外一重考虑:为什么在求职或演讲比赛之类的竞争场合,人们通常不愿作为第一个或前几个登台呢?而且越是好的越不愿意第一个登台呢?因为人们可能存在等一等、看一看的决策习惯,前几名往往只作为参照标准被评审人有意无意地放弃了。
  不要被概率愚弄
  概率计算,是一项颇具挑战性的工作。事实上,大多数人都是概率方面的白痴。即使是一些数学专家犯错误也是常事。专家尚且如此,普通大众被概率愚弄也就很正常了。下面是常见概率决策失误的例子。
  一种常见错误是,人们往往有夸大小样本代表性的倾向。阿克洛夫(G。 Akerlof,2001年诺贝尔经济学奖得主)1991年的一篇文章中提到了这种现象:
  让我们假定,你想买一辆新车,并从价格经济和使用寿命角度考虑决定买沃尔沃或萨帕。作为精明的买家,你阅读了《消费者调查》获取相关信息,发现大多数专家认为沃尔沃的机械性能更好,大多数读者认为沃尔沃有良好的维修记录。在这些信息的武装下,你准备下周就去和沃尔沃销售商谈判。然而,在这个周末你参加了一次聚会,和一个熟人谈起你的打算,他的反应是质疑和警告:“买沃尔沃!不会是开玩笑吧?我姐夫有一辆沃尔沃,先是计油器出问题,然后是后备箱出问题,再后来是变速器和离合器。最后,不到三年就把那辆车当废品卖掉了。”
  在这种情况下,你还会买沃尔沃吗?估计你会立即转向购买萨帕了。但是,仔细想想,你的朋友提供的信息,不过是在有关沃尔沃的大量样本信息中再加入一个样本信息而已,并不足以改变样本的平均值—也就是说,仅凭你朋友的一席话,并不足以改变原先支持你选择沃尔沃的理由。但是,现实中有多少人还能这样理性地思考呢?
  类似地,人们也常常犯下以总体特征来推断小样本特征的错误。譬如许多人认为,一家医院中一年出生的小孩大致应该是男孩和女孩各占50%左右。事实上,很多小医院的出生性别比完全不是这样。一个城市的出生性别比可能是1:1,但这不等于在更小的单位也是如此。如果你不能理解小医院为什么通常不是1:1的性别比,那么你想想更小的单位,比如家庭,有多少家庭出生的小孩会是男孩女孩各占一半呢?读者有必要记住,小样本的特征不一定服从总体的特征,所以不能把总体的特征作为小样本特征的描述。当然,反过来也一样,小样本难以反映总体的情况,所以也不能把小样本特征当做总体特征。比如,不能看到几个没文化的人比几个有文化的人赚了更多的钱,就得出结论说文化程度高对提高经济收入并没有帮助。又比如,你不能因为看到一个无臂人用脚画画很好,就得出结论说要学好画画就要砍掉双手一样。可是现实中却有持这种逻辑的人。
  另一种常见的错误是人们常常忽略了随机事件的独立性,错误地把它们关联起来。比如掷硬币,每一次投掷出现正面或反面的概率都是0。5。也就是说,以前曾经出现过什么样的历史,对于下一次投掷的结果是没有影响的。考虑你现在参加投掷硬币的赌博游戏,每投掷一次赌注1元。已经投了9次结果都很“偶然”地出现了正面,现在面临第10次投掷,你应该选择押注正面还是反面?有不少人是这样想的,既然已经出现了9次正面,均匀的硬币要连续出现10次正面的概率太小了(这个概率为0。510 = 0。097 7%),因此下一次出现反面的概率应该很大。这样的决策,忽略了下一次投掷概率与历史无关的事实。只要硬币是均匀的,不管前9次结果如何,下一次正面和反面出现的概率均为0。5,所以你押注哪一面,胜负概率都一样。当然,这里还有另一种可能,那就是硬币不是均匀
  【更新慢或者章节错误,点击举报(请详细说明)】



'17'与上帝博弈(6)

  的,所以前面9次出现正面并不那么“偶然”,如此第10次还很有可能出现正面—你现在应该选择的就是正面,而不是像先前所思考的那样选择反面。
  这个赌硬币的例子和股票市场很类似。股票市场也充满了随机性。基本上有两种投资理念,一种认为股票价格完全随机,与业绩无关,这种情况下股票与均匀硬币本质上是一样的,股票价格的历史表现不足以作为决策的依据,因为未来价格与历史价格无关;另一种观点认为,股票的长期业绩较好,很可能表明股票存在内在价值支撑,这就与非均匀材质的硬币一样,按照这样的理念,那么过去业绩表现较好的,在未来也更有可能表现出较好的业绩。这两类观点究竟哪一类更符合股票市场的现实?现在似乎还没有研究可以将它们检验出来。但是通过一些仿真实验可以明白的是,存在大量均匀和非均匀的硬币不断投掷,比如经过30轮投掷,能够保持30次都在正面的硬币仍然存在,而这些硬币也并不完全是非均匀的硬币,这表明可能部分股票的业绩确实有内在支撑,但也有些股票业绩良好可能仅仅是偶然因素。
  还有一种经常犯错误的情况是很多人不善于从结果去推断信息,以至于过度夸大了某些后果的严重性。我太太的一个朋友怀了小孩,因高龄怀孕担心胎儿的健康做了唐氏筛查。唐氏综合征俗称先天性痴呆,是最常见的一种染色体疾病。怀孕年龄越大,胎儿患此病的概率越高,按照年龄段来看这位朋友胎儿患此病的概率为0。13%。如果胎儿确实患有此病,则唐氏筛查有80%的可能性会查出来(也就是有20%的可能性查不出,但胎儿实际上是患病的);如果胎儿未患此病,则不会查出异常。这位朋友不放心去做了筛查,结果没什么问题,但她反而更担心了。我太太说,没检查出问题不是很好吗,可以放心了;她却说,还是有20%的可能性患病啊,只是没有查出来啊。我太太的数学很差,听她这样说也懵了,但又觉得不对劲,回来问我,为什么检查无恙之后,患病的概率反而提高了?我一听就觉得好笑:她们是先验地假定胎儿已经患上唐氏综合征,所以才会认为未检查出病状有20%的患病概率;事实上,胎儿患病的概率仅为0。13%,检查后未发现异常而胎儿患病的概率应是 (0。13%×20%) / (0。13%×20%+99。87%×100%) = 0。0

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的