神鸟电子书 > 经管其他电子书 > 量子物理史话 >

第21部分

量子物理史话-第21部分

小说: 量子物理史话 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



     但是对于当时的欧洲物理学家来说,矩阵几乎是一个完全陌生的名字。甚至连海森堡自己,也不见得对它的性质有着完全的了解。波恩决定为海森堡的理论打一个坚实的数学基础,他找到泡利,希望与之合作,可是泡利对此持有强烈的怀疑态度,他以他标志性的尖刻语气对波恩说:“是的,我就知道你喜欢那种冗长和复杂的形式主义,但你那无用的数学只会损害海森堡的物理思想。”波恩在泡利那里碰了一鼻子灰,不得不转向他那熟悉矩阵运算的年轻助教约尔当(Pascual Jordan;再过一个礼拜,就是他101年诞辰),两人于是欣然合作,很快写出了著名的论文《论量子力学》(Zur Quantenmechanik),发表在《物理学杂志》上。在这篇论文中,两人用了很大的篇幅来阐明矩阵运算的基本规则,并把经典力学的哈密顿变换统统改造成为矩阵的形式。传统的动量p和位置q这两个物理变量,现在成为了两个含有无限数据的庞大表格,而且,正如我们已经看到的那样,它们并不遵守传统的乘法交换率,p×q ≠ q×p。
    波恩和约尔当甚至把p×q和q×p之间的差值也算了出来,结果是这样的:
    pq – qp = (h/2πi) I
    h是我们已经熟悉的普朗克常数,i是虚数的单位,代表…1的平方根,而I叫做单位矩阵,相当于矩阵运算中的1。波恩和约尔当奠定了一种新的力学——矩阵力学的基础。在这种新力学体系的魔法下,普朗克常数和量子化从我们的基本力学方程中自然而然地跳了出来,成为自然界的内在禀性。如果认真地对这种力学形式做一下探讨,人们会惊奇地发现,牛顿体系里的种种结论,比如能量守恒,从新理论中也可以得到。这就是说,新力学其实是牛顿理论的一个扩展,老的经典力学其实被“包含”在我们的新力学中,成为一种特殊情况下的表现形式。
    这种新的力学很快就得到进一步完善。从剑桥返回哥廷根后,海森堡本人也加入了这个伟大的开创性工作中。11月26日,《论量子力学II》在《物理学杂志》上发表,作者是波恩,海森堡和约尔当。这篇论文把原来只讨论一个自由度的体系扩展到任意个自由度,从而彻底建立了新力学的主体。现在,他们可以自豪地宣称,长期以来人们所苦苦追寻的那个目标终于达到了,多年以来如此困扰着物理学家的原子光谱问题,现在终于可以在新力学内部完美地解决。《论量子力学II》这篇文章,被海森堡本人亲切地称呼为“三人论文”(Dreimannerarbeit)的,也终于注定要在物理史上流芳百世。
    新体系显然在理论上获得了巨大的成功。泡利很快就改变了他的态度,在写给克罗尼格(Ralph Laer Kronig)的信里,他说:“海森堡的力学让我有了新的热情和希望。”随后他很快就给出了极其有说服力的证明,展示新理论的结果和氢分子的光谱符合得非常完美,从量子规则中,巴尔末公式可以被自然而然地推导出来。非常好笑的是,虽然他不久前还对波恩咆哮说“冗长和复杂的形式主义”,但他自己的证明无疑动用了最最复杂的数学。
    不过,对于当时其他的物理学家来说,海森堡的新体系无疑是一个怪物。矩阵这种冷冰冰的东西实在太不讲情面,不给人以任何想象的空间。人们一再追问,这里面的物理意义是什么?矩阵究竟是个什么东西?海森堡却始终护定他那让人沮丧的立场:所谓“意义”是不存在的,如果有的话,那数学就是一切“意义”所在。物理学是什么?就是从实验观测量出发,并以庞大复杂的数学关系将它们联系起来的一门科学,如果说有什么图像能够让人们容易理解和记忆的话,那也是靠不住的。但是,不管怎么样,毕竟矩阵力学对于大部分人来说都太陌生太遥远了,而隐藏在它背后的深刻含义,当时还远远没有被发掘出来。特别是,p×q ≠ q×p,这究竟代表了什么,令人头痛不已。
    一年后,当薛定谔以人们所喜闻乐见的传统方式发布他的波动方程后,几乎全世界的物理学家都松了一口气:他们终于解脱了,不必再费劲地学习海森堡那异常复杂和繁难的矩阵力学。当然,人人都必须承认,矩阵力学本身的伟大含义是不容怀疑的。
    但是,如果说在1925年,欧洲大部分物理学家都还对海森堡,波恩和约尔当的力学一知半解的话,那我们也不得不说,其中有一个非常显著的例外,他就是保罗•;狄拉克。在量子力学大发展的年代,哥本哈根,哥廷根以及慕尼黑三地抢尽了风头,狄拉克的崛起总算也为老牌的剑桥挽回了一点颜面。
    保罗•;埃德里安•;莫里斯•;狄拉克(Paul Adrien MauriceDirac)于1902年8月8日出生于英国布里斯托尔港。他的父亲是瑞士人,当时是一位法语教师,狄拉克是家里的第二个孩子。许多大物理学家的童年教育都是多姿多彩的,比如玻尔,海森堡,还有薛定谔。但狄拉克的童年显然要悲惨许多,他父亲是一位非常严肃而刻板的人,给保罗制定了众多的严格规矩。比如他规定保罗只能和他讲法语(他认为这样才能学好这种语言),于是当保罗无法表达自己的时候,只好选择沉默。在小狄拉克的童年里,音乐、文学、艺术显然都和他无缘,社交活动也几乎没有。这一切把狄拉克塑造成了一个沉默寡言,喜好孤独,淡泊名利,在许多人眼里显得geeky的人。有一个流传很广的关于狄拉克的笑话是这样说的:有一次狄拉克在某大学演讲,讲完后一个观众起来说:“狄拉克教授,我不明白你那个公式是如何推导出来的。”狄拉克看着他久久地不说话,主持人不得不提醒他,他还没有回答问题。
    “回答什么问题?”狄拉克奇怪地说,“他刚刚说的是一个陈述句,不是一个疑问句。”
    1921年,狄拉克从布里斯托尔大学电机工程系毕业,恰逢经济大萧条,结果没法找到工作。事实上,很难说他是否会成为一个出色的工程师,狄拉克显然长于理论而拙于实验。不过幸运的是,布里斯托尔大学数学系又给了他一个免费进修数学的机会,2年后,狄拉克转到剑桥,开始了人生的新篇章。
    我们在上面说到,1925年秋天,当海森堡在赫尔格兰岛作出了他的突破后,他获得波恩的批准来到剑桥讲学。当时海森堡对自己的发现心中还没有底,所以没有在公开场合提到自己这方面的工作,不过7月28号,他参加了所谓“卡皮察俱乐部”的一次活动。卡皮察(P。L。Kapitsa)是一位年轻的苏联学生,当时在剑桥跟随卢瑟福工作。他感到英国的学术活动太刻板,便自己组织了一个俱乐部,在晚上聚会,报告和讨论有关物理学的最新进展。我们在前面讨论卢瑟福的时候提到过卡皮察的名字,他后来也获得了诺贝尔奖。
    狄拉克也是卡皮察俱乐部的成员之一,他当时不在剑桥,所以没有参加这个聚会。不过他的导师福勒(William Alfred Fowler)参加了,而且大概在和海森堡的课后讨论中,得知他已经发明了一种全新的理论来解释原子光谱问题。后来海森堡把他的证明寄给了福勒,而福勒给了狄拉克一个复印本。这一开始没有引起狄拉克的重视,不过大概一个礼拜后,他重新审视海森堡的论文,这下他把握住了其中的精髓:别的都是细枝末节,只有一件事是重要的,那就是我们那奇怪的矩阵乘法规则:p×q ≠ q×p。
    *********饭后闲话:约尔当
    恩斯特•;帕斯库尔•;约尔当(Ernst Pascual Jordan)出生于汉诺威。在我们的史话里已经提到,他是物理史上两篇重要的论文《论量子力学》I和II的作者之一,可以说也是量子力学的主要创立者。但是,他的名声显然及不上波恩或者海森堡。
    这里面的原因显然也是多方面的,1925年,约尔当才22岁,无论从资格还是名声来说,都远远及不上元老级的波恩和少年成名的海森堡。当时和他一起做出贡献的那些人,后来都变得如此著名:波恩,海森堡,泡利,他们的光辉耀眼,把约尔当完全给盖住了。
    从约尔当本人来说,他是一个害羞和内向的人,说话有口吃的毛病,总是结结巴巴的,所以他很少授课或发表演讲。更严重的是,约尔当在二战期间站到了希特勒的一边,成为一个纳粹的同情者,被指责曾经告密。这大大损害了他的声名。
    约尔当是一个作出了许多伟大成就的科学家。除了创立了基本的矩阵力学形式,为量子论打下基础之外,他同样在量子场论,电子自旋,量子电动力学中作出了巨大的贡献。他是最先证明海森堡和薛定谔体系同等性的人之一,他发明了约尔当代数,后来又广泛涉足生物学、心理学和运动学。他曾被提名为诺贝尔奖得主,却没有成功。约尔当后来显然也对自己的成就被低估有些恼火,1964年,他声称《论量子力学》一文其实几乎都是他一个人的贡献——波恩那时候病了。这引起了广泛的争议,不过许多人显然同意,约尔当的贡献应当得到更多的承认。
    五
    p×q ≠ q×p。如果说狄拉克比别人天才在什么地方,那就是他可以一眼就看出这才是海森堡体系的精髓。那个时候,波恩和约尔当还在苦苦地钻研讨厌的矩阵,为了建立起新的物理大厦而努力地搬运着这种庞大而又沉重的表格式方砖,而他们的文章尚未发表。但狄拉克是不想做这种苦力的,他轻易地透过海森堡的表格,把握住了这种代数的实质。不遵守交换率,这让我想起了什么?狄拉克的脑海里闪过一个名词,他以前在上某一门动力学课的时候,似乎听说过一种运算,同样不符合乘法交换率。但他还不是十分确定,他甚至连那种运算的定义都给忘了。那天是星期天,所有的图书馆都关门了,这让狄拉克急得像热锅上的蚂蚁。第二天一早,图书馆刚刚开门,他就冲了进去,果然,那正是他所要的东西:它的名字叫做“泊松括号”。
    我们还在第一章讨论光和菲涅尔的时候,就谈到过泊松,还有著名的泊松光斑。泊松括号也是这位法国科学家的杰出贡献,不过我们在这里没有必要深入它的数学意义。总之,狄拉克发现,我们不必花九牛二虎之力去搬弄一个晦涩的矩阵,以此来显示和经典体系的决裂。我们完全可以从经典的泊松括号出发,建立一种新的代数。这种代数同样不符合乘法交换率,狄拉克把它称作“q数”(q表示“奇异”或者“量子”)。我们的动量、位置、能量、时间等等概念,现在都要改造成这种q数。而原来那些老体系里的符合交换率的变量,狄拉克把它们称作“c数”(c代表“普通”)。
    “看。”狄拉克说,“海森堡的最后方程当然是对的,但我们不用他那种大惊小怪,牵强附会的方式,也能够得出同样的结果。用我的方式,同样能得出xy…yx的差值,只不过把那个让人看了生厌的矩阵换成我们的经典泊松括号'x;y'罢了。然后把它用于经典力学的哈密顿函数,我们可以顺理成章地导出能量守恒条件和玻尔的频率条件。重要的是,这清楚地表明了,我们的新力学和经典力学是一脉相承的,是旧体系的一个扩展

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的