自私的基因-第4部分
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
第二章 复制基因
天地伊始,一切单一纯简。即使是简单的宇宙,要说清楚它是怎样开始形成的真是谈何容易。而复杂的生命,或能够创造生命的生物如何突然出现,而且全部装备齐全,我想,无疑是一个更难解答的问题。达尔文的自然选择进化论是令人满意的,因为它说明了由单一纯简变成错综复杂的途径,说明了杂乱无章的原子如何能分类排列,形成越来越复杂的模型,直至最终创造人类。人们一直试图揭开人类生存的奥秘,而迄今为止只有达尔文提供的答案是令人信服的。我打算以比一般还要通俗的语言阐明这个伟大的理论,并从进化还未发生以前的年代谈起。
达尔文的“适者生存”其实是稳定者生存(survival
of th estable)这个普遍法则的广个特殊情况。宇宙为稳定的物质所占据。所谓稳定的物质,是指原子的聚合体,它具有足够的稳定性或普遍性而被赋予一个名称。它可能是一个独特的原子聚合体,如马特霍恩(Matterhorn),它存在的时间之长足以值得人们为之命名。稳定的物质也可能是属于某个种类(class)的实体,如雨点,它们出现得如此频繁以致理应有一个集合名词作为名称,尽管雨点本身存在的时间是短暂的。我们周围看得见,以及我们认为需要解释的物质——岩石、银河,海洋的波涛——在大小不同的程度上都是稳定的原子模型。肥皂泡往往是球状的,因为这是薄膜充满气体时的稳定形状。在宇宙飞船上,水也是稳定成为球形的液滴状,但在地球上,由于地球引力的关系,静止的水的稳定表面是水平的。盐的结晶体一般是立方体,因为这是把钠和氯离子聚合在一起的稳定形式。在太阳里,最简单的原子即氢原子不断熔合成氦原子,因为在那样的条件下,氦的结构比较稳定。遍布宇宙各处的星球上,其他各种甚至更为复杂的原子正在形成。依照目前流行的理论,早在开天辟地发出“大砰啪”爆炸声之时,这些比较复杂的原子已开始形成。我们地球上各种元素也是来源于此。
有时候,在原子相遇时,由于发生化学反应而结合成分子,这些分子具有程度不同的稳定性。它们可能是很大的。一块钻石那样的结晶体可以视为一个单一的分子,其稳定程度是众所周知的,但同时又是一个十分简单的分子,因为它内部的原子结构是无穷无尽地重复的。在现在的生活有机体中,还有其他高度复杂的大分子,它们的复杂性在好几个水平上表现出来。我们血液中的血红蛋白就是典型的蛋白质分子。它是由较小的分子氨基酸的链所组成,每个分子包含几十个排列精确的原子。在血红蛋白分子里有574个氨基酸分子。它们排列成四条互相缠绕在一起的链,形成一个立体球形,其结构之错综复杂实在使人眼花镣乱。一个血红蛋白分子的模型看起来象一棵茂密的蒺藜。但和真的蒺藜又不一样,它并不是杂乱的近似模型,而是毫厘不爽的固定结构。这种结构在一般人体内同样地重复六万亿亿次以上,其模型完全一致。如血红蛋白这样的蛋白分子,其酷似蒺藜的形态是稳定的,就是说,它的两条由序列相同的氨基酸构成的链,象两条弹簧一样倾向于形成完全相同的立体盘绕模型。在人体内,血红蛋白蒺藜以每秒约四百万亿个的速度形成它们“喜爱”的形状,而同时另外一些血红蛋白以同样的速度被破坏。
血红蛋白是个现代分子,人们通常用它来说明原子趋向于形成某种稳定模型的原理。我们在这里要谈的是,远在地球还没有生命之前,通过一般的物理或化学过程,分子的某种形式的初步进化现象可能就已存在。没有必要考虑诸如预见性、目的性、方向性等问题。如果一组原子在受到能量的影响而形成某种稳定的模型,它们往往倾向于保持这种模型。自然选择的最初形式不过是选择稳定的形式并抛弃不稳定的形式罢了。这里面并没有什么难以理解的地方。事物的发展只能是这样。
可是,我们自然不能因此认为,这些原理本身就足以解释一些结构复杂的实体,如人类的存在。取一定数量的原子放在一起,在某种外界能量的影响下,不停地摇动,有朝一日它们会碰巧落入正确的模型,于是亚当就会降临!这是绝对办不到的。你可以用这个方法把几十个原子变成一个分子,但一个人有多达一千亿亿亿个原子。如果要制造一个人,你就得摇动你那个生物化学的鸡尾酒混合器,摇动的时间之久,就连宇宙存在的漫长岁月与之相比好象只是一眨眼的功夫。即使到了那个时候,你也不会如愿以偿。在这里,我们必须求助于达尔文学说的高度概括的理论。有关分子形成的缓慢过程的故事只能讲到这儿,其他的该由达尔文的学说去解释了。
有关生命的起源,我的叙述只能是纯理论的。事实上当时并无人在场。在这方面存在很多持对立观点的学说,但它们也有某些共同的特点。我的概括性的叙述大概与事实不会相去太远。
生命出现之前,地球上有哪些大量的化学原料,我们不得而知。但很可能有水、二氧化碳、甲烷和氨:它们都是简单的复合物。就我们所知,它们至少存在于我们太阳系的其他一些行星上。一些化学家曾经试图模仿地球在远古时代所具有的化学条件。他们把这些简单的物质放人一个烧瓶中,并提供如紫外线或电火花之类的能源——原始时代闪电现象的模拟。几个星期之后,在瓶内通常可以找到一些有趣的东西:一种稀薄的褐色溶液,里面含有大量的分子,其结构比原来放入瓶内的分子来得复杂。特别是在里面找到了氨基酸——用以制造蛋白质的构件(building
block),蛋白质乃是两大类生物分子中的一类。在进行这种试验之前,人们原来认为天然的氨基酸是确定生命是否存在的依据。如果说在火星上发现氨基酸,那么火星上存在生命似乎是可以肯定无疑的了。但在今天,氨基酸的存在可能只是意味着在大气层中存在一些简单的气体,还有一些火山,阳光和发生雷鸣的天气。近年来,在实验室里模拟生命存在之前的地球的化学条件,结果获得了被称为嘌呤和嘧啶的有机物质。它们是组成遗传分子脱氧核糖核酸的构件,即DNA。
“原始汤”的形成想来必然是与此类似过程的结果。生物学家和化学家认为“原始汤”就是大约三十亿到四十亿年前的海洋。有机物质在某些地方积聚起来,也许在岸边逐渐干燥起来的浮垢上,或者在悬浮的微小的水珠中。在受到如太阳的紫外线之类的能量的进一步影响后,它们结合成大一些的分子。现今,大有机分子存在的时间不会太长,我们甚至觉察不到它们的存在,它们会很快地被细菌或其他生物所吞噬或破坏。但细菌以及我们人类都是后来者。所以在那些日子里,大有机分子可以在稠浓的汤中平安无事地自由漂浮。
到了某一个时刻,一个非凡的分子偶然形成。我们称之为复制基因(replicator)。它并不见得是那些分子当中最大的或最复杂的。但它具有一种特殊的性质——能够复制自己的拷贝。看起来这种偶然性非常之小。的确是这样。发生这种偶然情况的可能性是微乎其微的。在一个人的一生中,实际上可以把这种千年难得一遇的情况视为不可能。这就是为什么你买的足球彩票永远不会中头奖的道理。但是我们人类在估计什么是可能或不可能发生的时候,我们不习惯于将其放在几亿年这样长久的时间内去考虑。如果你在一亿年中每星期都购买一次彩票,说不定你会中上几次头奖呢。
事实上,一个能复制自己拷贝的分子并不象我们原来所想象那样难得,这种情况只要发生一次就够了。我们可以把复制基因当作模型或样板。我们可以把它想象为由一条复杂的链所构成的大分子,链本身是由各种类型的起构件作用的分子所组成。在复制基因周围的汤里,这种小小的构件多的是。现在让我们假定每一块构件都具有吸引其同类的亲和力。来自汤里的这种构件一接触到它对之有亲和力的复制基因的另一部分,它往往就附着在那儿不动。按照这个方式附着在一起的构件会自动地仿照复制基因本身的序列排列起来。这时我们就不难设想,这些构件逐个地连接起来,形成一条稳定的链和原来复制基因的形成过程一模一样。这个一层一层地逐步堆叠起来的过程可以继续下去。结晶体就是这样形成的。另一方面,两条链也有一分为二的可能,这样就产生两个复制基因,而每个复制基因还能继续复制自己的拷贝。
一个更为复杂的可能性是,每块构件对其同类并无亲和力,而对其他的某一类构件却有互相吸引的亲和力。如果情况是这样,复制基因作为样板的作用并不产生全似的拷贝,而是某种”反象”,这种“反象”转过来再产生和原来的正象全似的拷贝,对我们来说,不管原来复制的过程是从正到反或从正到正都无足轻重;但有必要指出,现代的第一个复制基因即DNA分子,它所使用的是从正到反的复制过程。值得注意的是,突然间,一种新的“稳定性”产生了。在以前,汤里很可能并不存在非常大量的某种特殊类型的复杂分子,因为每一个分子都要依赖于那些碰巧产生特别稳定结构的构件。第一个复制基因一旦诞生了,它必然会迅速地在海洋里到处扩散它的拷贝,直至较小的构件分子日渐稀少,而其他较大的分子也越来越难得有机会形成。
这样我们到达了一个具有全都一样的复制品的大种群的阶段。现在,我们必须指出,任何复制过程都具有一个重要的特性:它不可能是完美无缺的。它准会发生差错。我倒希望这本书里没有印刷错误,可是如果你细看一下,你可能会发现一两个差错。这些差错也许不至于严重地歪曲书中句子的含义,因为它们只不过是”第一代”的错误。但我们可以想象一下,在印刷术尚未问世之前,那时候如福音之类的各种书籍都是手抄的。以抄写书籍为业的人无论怎样小心谨慎,他们不可避免地要发生一些差错,何况有些抄写员还会心血来潮,有意“改进”一下原文。如果所有的抄写员都以同一本原著为蓝本,那么原意还不至于受到太大的歪曲。可是,如果手抄本所依据的也是手抄本,而后者也是抄自其他手抄本的话,那么谬种就开始流传、积累,其性质也更趋严重。我们往往认为抄写错误是桩坏事情,而且我们也难以想象,在人们抄写的文件中能有什么样的错误可以认为是胜于原文的。当犹太圣典的编纂人把希伯来文的“年轻妇女”迻译成希腊文的“处女”时,我想我们至少可以说他们的误译发生了意想不到的后果。因为圣典中的预言变成“看哪!一个处女将要受孕并且要养一个儿子……”。不管怎样,我们将要看到,生物学的复制基因在其复制过程中所造成的错误确实能产生改良的效果的。对生命进化的进程来说,产生一些差错是必不可少的。原始的复制基因在复制拷贝时其精确程度如何,我们不得而知。今天,它们的后代DNA分子和人类所拥有的最精密的复印术相比却是准确得惊人。然而,差错最终使进化成为可能。原始的复制基因大概产生过多得多的差错。不管怎样,它